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Surface Tension for the Two-Component Plasma at 
F = 2 near an Interface 
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The grand partition function for the two-dimensional, two-component plasma 
at F= 2 is evaluated exactly in a finite system for various interfaces: a charged 
hard wall (the so-called primitive electrode model), a second two-component 
plasma of different fugacity separated by an impermeable membrane (the ideally 
polarizable interface), and a metal wall separated by an impermeable barrier. 
For each of these models the surface tension is calculated directly from the 
asymptotic expansion of the grand partition function. 
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problem. 

1. I N T R O D U C T I O N  

The two-dimensional, two-component  plasma is a model system of classi- 
cal, oppositely charged point particles interacting via the logarithmic 
potential. In general the system is characterized by two dimensionless 
parameters - - the  coupling F =  q2 /kT  (q is the magnitude of the charges) 
and the product of the density and the square of the hard-core diameter. 
A hard-core or similar short-distance regularization is necessary for 
couplings F~> 2 to prevent collapse of the oppositely charged species. An 
alternative to regularizing the potential is to impose a lattice structure on 
the domain and constrain the oppositely charged particles to distinct 
sublattices.(1) 

For  F < 2, short-distance regularization of the logarithmic potential is 
unnecessary. The relevant density-like parameter  is the fugacity ~. The case 
F = 2  is special. Although collapse occurs, the resulting thermodynamic 
singularities are sufficiently weak (logarithmic) that the correlation 
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functions are finite with ~ playing the role of the inverse correlation 
length. (2, 3) 

Another special feature of the isotherm F = 2  is that the system is 
exactly solvable: the pressure, density profiles, and correlation functions 
can all be computed, (1 6) The formalism is sufficiently general to allow for 
a variety interfaces. ~2'6) Some examples are a charged wall (2"5) (the so-called 
primitive electrode model), a second two-component plasma of different 
fugacity separated by an impermeable membrane (2) (the ideally polarizable 
interface), and a metal wall separated by an impermeable barrier. (2'6) 

Cornu and Jancovici (2) have provided the formalism necessary to 
calculate the density profiles and correlation functions ar F =  2. From the 
density profiles, an indirect calculation of the surface tension and equation 
of state is possible. This was given by Cornu and Jancovici for the primitive 
electrode and ideally polarizable interface models. However, the equation 
of state and surface tension should be obtainable directly from the grand 
partition function. Here we provide such a direct calculation of the surface 
tension for the primitive electrode, ideally polarizable interface, and metal 
wall models. 

2. EVALUATION OF THE G R A N D  PARTIT ION FUNCTION 
FOR THE PRIMIT IVE  ELECTRODE A N D  IDEALLY 
POLARIZABLE INTERFACE 

2.1. Reduct ion to an Eigenvalule Problem 

Both the primitive electrode and the ideally polarizable interface 
models can be obtained from two-component plasma models with position- 
dependent fugacities. (2) We consider the two-dimensional, two-component 
plasma and for convenience choose the boundary conditions in the direc- 
tion perpendicular to the wall (the x direction, say) to be periodic. The 
electrostatic potential ~(x, x') between a particle of charge q at x = (x, y) 
and a particle of charge q' at x ' =  (x', y ')  is then 

~b(x, x') = - q q '  log[ [sin(z - z')[ (L/~z)] (2.1) 

where the complex scaled coordinate z is defined by 

z = rc(x + iy ) /L  (2.2) 

and similarly for z'. 
The Boltzmann factor for a symmetric mixture of N particles of charge 

q with scaled complex coordinates zk and N particles of charge - q  with 
' is thus coordinates zk 
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L )  NF " '7 " ! r F WNr = YI ~ <~J <k <" N sin(zk ~ Tj) sin( z'k -- ZJ) (2.3a) 
I I~IjN=I 1-IN= 1 sin (zy -- z~) 

1 , 
= ( L )  Nr det[sin(z~__Zk)]/,k=,,..,N r (2.3b) 

where to obtain (2.3b) a simple corollary of the Cauchy double alternative 
determinant formula has been used (see, e.g., ref. 4). 

As commented in the Introduction, to obtain finite thermodynamics 
for couplings F~>2 it is necessary either to regularize the potential (2.1) 
at the origin for oppositely charged species or constrain the different 
species to distinct sublattices. The latter approach is required for exact 
calculations. 

Thus, suppose the positive (negative) charged particles are confined to 
an M1 x M2 lattice with scaled complex coordinates r a (sjk), j =  1,..., MI,  
k- -  1,..., M2, with rjk # s/k,. The grand partition function with variable site 
fugacities ~+(rjk) and ~_(sjk) at each site of the sublattice available to the 
positive and negative charges, respectively, is then defined as 

2 r  = ~ 7r ~ 2 ~ ~+(z,)~ (z;) WNr (2.4) 
U = 0  ze{r} z'~{s} 

Here the sum over z(z') consists of all distinct choices of N values of the 
scaled complex lattice coordinates rjk (sjk). The symbols rx and ~y denote 
the average lattice spacing in the x and y directions, respectively. 

At F - -  2, using (2.3b), we recognise (2.4) as an expansion in minors of 
the determinants of a 2 M I M  2 • 2M~ Mz matrix. ~) We have 

~2 = det(I 2MI M2 + K) (2.5a) 

where 

with 

and 

OMIM2 K1 ] (2.5b) 
K=[_ K2 OMIM2 

K1 - rc'cxry [~+(rjk) ~ (sj,~,)] l/z (2.5c) 
L sin 7~(rjk - -  S j , k , ) / L  

K 2 = rCtx'CY [~+ (rY'~') ~ (Sjk)]l/2 (2 .5d)  
g sin zc(s~ - r)~k,)/g 
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In (2.5a), [2M1M 2 denotes the identity matrix of order 2MIM2, and in 
(2.5b), OMIM2 denotes the zero matrix of order MIM2. 

Provided the position-dependent fugacities are real, the matrix K is 
anti-Hermitian. The corresponding eigenvalues 2j are therefore pure 
imaginary and occur in complex conjugate pairs. Hence we have 

M1 M2 
Z2 = l-I* (1 + iAjl 2) (2.6) 

j = l  

where the asterisk in the product denotes the restriction Im(2j)> 0, so the 
evaluation of the grand partition function at F--  2 has been reduced to the 
calculation of the eigenvalues of K. 

2.2. The Cont inuum Limit 

Suppose the lattice points rjk and sjk uniformly fill a rectangle of length 
L (the period) in the x direction and length 2W in the y direction. In the 
limit 

Ml, M2 --+ oo (and thus z~, Zy --+ 0) (2.7) 

the lattice structure becomes a continuum. Due to the short-ranged 
collapse of oppositely charged particles, the product (2.6) will diverge. 
However, the individual eigenvalues remain finite. 

Explicitly, from (2.5), in the limit (2.7) the eigenvalue problem is to 
calculate the eigenvalues 2 and eigenfunctions (F(r, s), G(r,s)) of the 
coupled integral equations 

w L G(rl, sl) 2F(r2, s2) 
L f - w  dsl [ '(+($1)-]1/2 fo drlsin~[r2-rl +i(s2-sl)]/L [ - (_($2) ' ]  1/2 

(2.8a) 

and 

W 

-L f wdSl EC-(sl)ql/2 f2 F(rl, sl) 2G(r2, sl) 
drxsin~[r2-rl- i (sz-sl)] /L [~+(s2)] 1/2 

(2.8b) 

where we have written 

~+(r,s)=~+(s) and ~_(r,s)=~_(s) (2.9) 

and thus specialized to position-dependent fugacities which depend on 
the direction perpendicular to the interface--a valid choice for interface 
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models. The dependence on the difference variable in (2.8) and the 
periodicity of the sine function suggest that we seek eigenfunctions of the 
form 

F(r, s )=e  - 2=i~p ~/2)4L X(s) 

G(r, s) = e 2~zi(p 1/2)r/L Y(S) 

(2.10a) 

(2.10b) 

where p is an integer. 
Using the result that for p >~ 1 (p < 1) 

l fo ~ee€ rc(r + i~) dr = {2i s g n ( P - o ,  1/2)e'~i2P-l)/c' ~ < 0 ( ~ > 0 )  
(2.11) 

~ > 0  (~<0)  

we find for the eigenvalue equation (2.8), for p ~> 1, 

W 

I, dSl [~ +(sl)]l/2 e-~St Y(s~)= 
2 

1 e us:X(s2) 
v I-ff_(s2)] 1/2 

(2.12a) 

I s2 dsl [~ (sl) ]l/2e~SW(sl)- 1 e~s2Y(sz) 
2-w v [#+(s2)] I/2 (2.12b) 

where 

m ~ m  

v 2~i (2.13a) 

and 

# = 7z(2p - 1)/L (2.13b) 

These integral equations are equivalent to a pair of coupled differential 
equations with some appropriate boundary conditions. This step is best 
performed when specific interface models are being considered. 

2.3. The  P r i m i t i v e  E lec t rode  

The primitive electrode is a charged hard wall with surface charge q~ 
at a boundary, which we will take to be s = 0, and a neutralizing surface 
charge qo- at the other wall, s = W. This corresponds to the choice 

0, s < 0 (2.14) 
~_+(s) = [e =_4~s ' s > 0  
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Substituting (2.14) in (2.12) and differentiating with respect s2 gives the 
coupled differential equations 

1 
Y(S2) = ~ [-]~X(s2) -- X ' ( s 2 )  ] (2.15a) 

1 
X(s2)  = 7-  [ f lY(s2)  + Y'(s2)] (2.15b) 

;v 

where 

fi = 7z(2p - 1 ) /L + 2~a (2.16) 

These equations must be solved subject to the boundary conditions 

Y(0) = 0  (2.17a) 

X(W) = 0 (2.17b) 

Combining (2.15a) and (2.15b) gives the second-order equation 

Y"(s2) + [((v) 2 - fi23 Y(s2) = 0 (2.18) 

The solution of (2.18) with boundary condition (2.17a) is 

Y(s)  = A sin [(~v) 2 - fi2] 1/2 s (2.19) 

Substituting (2.19) in (2.15b) and using the remaining boundary condition 
(2.15b) then gives the equation 

sin m [ - ( ~ v )  2 - -  ]~2-] 1/2 f i2 ]  1/2 
/0 [ ( ~ y ) 2  _ ]~2-] 1/2 ~-cos  WE(~v) 2 -  = 0  ( 2 . 2 0 )  

Repeating the above working for p <  1, from (2.12) on, gives the same 
equation except that fi is to be replaced by - f t .  

For each integer p, and thus from (2.16) the permitted value of fi, 
(2.20) specifies an infinite set of the possible values of v, which from (2.13a) 
and the discussion immediately before (2.6) are real. The solutions of (2.20) 
are also discrete, so as well as being labeled by p, can be labeled by a 
further discrete index q. Hence from (2.13a) and (2.6) we have 

i Z =  ]-I 1+  (2.21) 
p= oo q \ V p ,  q /  J 

where the product over q is restricted to values such that Vp, q > O. 
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Differentiating (2.12) then gives 

2.4, The Ideally Polarizable Interface 

The ideally polarizable interface consists of two distinct plasmas of 
different fugacities separated by an impermeable membrane. This can be 
obtained by the choice 

~ ) ,  s < 0  (2.22) s < 0  ~_(s) = ( ~ ) ,  s > 0  

where 

1 
r(s~) = ~ [ux(s~) - X ' ( s 0 ]  

1 
X(s2) = ~wzv-~, [ ~ r ( s ~ ) +  r ' ( s2 ) ]  

(2.23a) 

(2.23b) 

and 24 = a for - W ~  S 2 < 0, while Z = b for 0 < s 2 ~ W. Equations (2.23) are 
to be solved subject to the boundary conditions 

Y( - W) = X(W) = 0 (2.24a) 

and 

x t , l  'j2 
l i m  o- ~ \ ; ~ ) j  = limo, y--~ \~_b)j (2.24b) 

The condition (2.24b) follows from the conditions 

X(0 + )/(~ ~>),/2 = X(0 - )/(~ ~))~/2 (2.25a) 

Y(0 )/(~))~/2 = y(0 +)/(~))1/2 (2.25b) 

which in turn follow from (2.12). 
The method of solution of these differential equations and boundary 

conditions is the same as in the previous section. We find 

Y(s)=A sin([(~(~)v)Z-l~2]l/2(s+ W)), - W<~s<O (2.26a) 

X(s)=Bsin([(~(b)v)Z--kI2]m(S-- W)), 0<s~< W (2.26b) 

Using (2.23) and (2.24b) then gives the equation 

(a) 

F(~(~)v) F(~(b)v)--~ G(~(% ') G(~(b)v) = 0 (2.27a) 
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where 

sin W ( t  2 - #2)1/2 
F( t )  = # (t 2 _/~2)1/2 + cos W ( t  2 - #2)1/2 (2.27b) 

sin W ( t  2 - #2) 
G( t )  = t (t 2_/~a)1/2 (2.27c) 

((z) = (~ ~z)/~ (+z)) 1/2 (2.27d) 

The same equation holds for p < 1 provided/~ is replaced by - #  and (Ca) 
is interchanged with C (b). Equation (2.27a) is analogous to (2.20) and thus 
the grand partition function can be written in terms of its solutions v = Vp, q 

by (2.21). 

3. A S Y M P T O T I C  E X P A N S I O N S  A N D  THE S U R F A C E  T E N S I O N  

3.1. The Surface Tension 

With the grand potential defined by 

( 2 = - f l  l l o g ~  (3.1) 

the surface tension 7 is given by (2) 

<) 132, 
~ -  - ~  ~,v,O 

where A is the surface area which carries a uniform charge density 
- q a  = - Q / A .  

For semiperiodic boundary conditions, with period L in the periodic 
direction and charged hard walls a distance W apart in the other direction, 
f2 has the large-volume expansion 

0 ~ - L W p ( ( )  + 2Lc%(~, a) (3.3) 

where p(~) denotes the bulk pressure. From (3.2), and the dependence of 
~z on A, it follows from (3.3) that 

, = (1 - o- ~@) COs(~, a) (3.4) 

Note from (3.3) that if we compute 

f2w:= lim l f 2  (3.5) 
L ~ o  L 
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then the term independent of W in the large-W expansion of s is 
2cos(~, a). 

For the ideally polarizable interface the independent variable is the 
potential drop A~b and not the surface charge, so (3.2) is not directly 
applicable. In the semiperiodic boundary conditions of the exact 
calculation 

s ~ - LW(p(((a))  + p(((b))) "-k L[(.Os(((a), ((b), AO ) 

+ (Ds(~ (a), (7 = O) -[- (Ds(~ (b), O" = 0 ) ]  (3.6) 

where the last two terms correspond to the surface term coming from the 
two hard walls. With the notation of (3.6), Cornu and Jancovici (2) have 
shown that the surface tension 7 at the boundary between the two phases 
is given by 

y = O~s(~(a), ~(b), A~b) (3.7) 

From (3.6), we see that, like ~os(~, a), ~o~(~ (a), ~(b), A~b) can be obtained 
from the W-independent term of the large-W expansion of (3.5). 

As commented in Section 2.2, the product over the eigenvalues (2.21) 
diverges in the continuum limit but each individual eigenvalue is finite. 
A way to avoid this divergence is to restrict the magnitude of  p in (2.21) 
below some finite multiple, R say, of the length of the strip L. Then (3.5), 
(3.1), (2.1), (2.20), and (2.27) give 

[ dt ~ log i +  (3.8) 
--R q:Vt, q>O \Vt, q/I ~] 

where Vt.q is the same as Vp, q, except ( p - 1 / 2 ) / L  is replaced by t, and is 
thus given by (2.20) for the primitive electrode and by (2.27) for the ideally 
polarizable interface. It will be seen below that the surface tension is finite 
in the limit R ~ ~ .  

3.2. A C l o s e d - F o r m  S u m m a t i o n  

The sum over the roots of Eqs. (2.20) and (2.27) in (3.8) can be 
obtained in a particularly simple closed form, which is a special case of the 
following result. 

T h e o r e m  1. 
large-lzl behavior 

Let f ( z )  be an analytic function of z which has the 

f ' ( R e  i~ re, 0 < 0 < n 
(3.9) 

f (Re i~  "~ l - c ,  ~ < 0 < 2re 
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where c is a constant, and suppose f (7)  r 0 for 7 = it, -2re  <~ t <<. O. Then 

S : =  ~ log (1 + ~ , i t  (3.10) 
7 : f ( 7 )  = 0  

\ ~ /  

has the closed-from evaluation 

S = l o g [ f (  -27zi)/ f(O)] (3.11) 

Proof. By the residue theorem 

1 ( f  A ~ ) f ' ( Z ) l o g ( l + ~ J )  S = rlim lim dz (3.12) 
8 ~ 0 + ~ i  s(r) "4- jBe(r)/] f ( Z )  

where A~(r) is the contour which runs from ir + s parallel to the imaginary 
axis to - i t  + s-and then along a half-circle in the right half-plane back to 
ir + s, while B,(r)  is the contour which runs from - i r - s  parallel to the 
imaginary axis to i r - s  and then along a half-circle in the left half-plane 
back to - ir + e. 

The value of the contour integrations along the half-circles can be 
obtained by replacing log(1 + 2ni/z) by its leading-order term 2zi/z. Thus, 
in the limit r ~ c~, these contours contribute 

(.2re / f ,(reiO)\ 
ij, ! lira ~ / d O  (3.13) 

o \ r ~ f ( r e  )J  

which, by hypothesis (3.9) of the theorem, equals zero. 
In the limit s ~ 0  § the contributions from the contours along the 

imaginary axis cancel for Im(z )>  0 and Ira(z)< -27t when the argument 
of the logarithm is positive. A nonzero contribution to (3.12) thus comes 
entirely from the integration along the imaginary axis, in the limit s-4  0 +, 
for - 2re < Im(z) < 0. Since, for - 2~ < t < 0, 

while 

we have 

27ri "~ 
lim log l + t T ~ s  ) = M  (3.14) 

s ~ O  + 

27zi "~ 
lim log 1 +t-~-~--s) = --Tti (3.15) 

s ~ -0  + 

S =  - i  ~ J dt 

The result (3.11) follows immediately. 

(3.16) 
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3.3. The  Exact Eva luat ions  

First consider the primitive electrode. Theorem 1, (2.20), and the 
remark after (3.5) give 

-2flcG(~, a) = d t l o g ( { l + ( t + 0 . ) / E ~ 2 + ( t + a ) 2 ] l / 2 } / 2 )  

+ d t l o g ( { l + ( t - 0 . ) / [ i ' , 2 + ( t - 0 . ) 2 1 1 / 2 } / 2 )  (3.17) 

As commented in Section 3.1, these integrals are convergent in the limit 
R ~  oo and thus the surface tension is cutoff-independent. Also, the 
integrals can then be evaluated explicitly, and we obtain 

~Os(~, 0.) = ~r~/2 + 0. s inh- ~(a/~) - (~2 + 0.2)1/2 (3.18) 

Identifying 2 ~  with m, we see that this result is identical to that obtained 
by Cornu and Jancovici (2) [Eq. (4.11)] using an indirect approach. 

For the ideally polarizable interface, Theorem 1, (2.27), (3.6), and 
(3.18) with a = 0  give 

goJ,(r C ~), J~) 

;o = - dt I-log f ( t ,  ~(~, ~(b), ((~)/~(b)) 

+ log F(t, ~(at, ~(b), ((b)/~(~))] + (1 -- ~/2)(~(a) + ~(b)) (3.19a) 

where 

Fit, ~~ r C(~)/C ~)) 
= ({1-[- t[-(~(a))2 ~_ ~2] 1/2}{ 1 _[_ /,[-(~(b))2 _]_ ~2"] --1/2} 

~(a) 
+ ((a)C~) =:7= ~ I-(((a))2 + t2] -1/2 I-(((b))2 + t2] - ~/2)/4 (3.19b) 

The quantity C(a)/((b), defined in terms of the fugacities by (2.27d), is related 
to d~b by (7'8) 

C(a)/C(b) = e ~q34 (3.20) 

In general the integral in (3.19a) cannot be evaluated explicitly. 
However, the special case of equal bulk fugacities ~(a)= ~(b~ __ ~ does allow 
an explicit evaluation. This is accomplished by substituting (3.20) in 
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(3.19b) and the taking the partial derivative of (3.19a) with respect to 
flqA~. Changing variables t = sinh s gives 

~/~co,(~, (, A~b) = _ ( sinh ~qA~6 f ?  ds cosh s 
O(flqAO) cosh 2s + cosh flqA(b (3.21a) 

= - lz~ sinh(flqAO/2) (3.21b) 

where (3.21b) follows from (3.21a) by using contour integration. Since 
~os(~, ~, 0 ) =  0 [this can be shown directly from (3.1%)] we thus have 

flo~(~, ~, AO)= -~(cosh(flqAO/2)- 1) (3.22) 

in agreement with the result obtained by Cornu and Jancovici [-Eq. (4.22), 
with m = 2 ~ ]  using an indirect approach. 

4. T H E  M E T A L  W A L L  

Here we will consider the two-dimensional, two-component plasma at 
F =  2 separated by an impermeable wall of thickness e from a metal wall 
which occupies the half-plane y < 0 .  Suppose the positive (negative) 
particles are confined to an M1 x M2 sublattice with complex coordinates 
rjk (sjk), j = 1,..., M1, k = 1,..., M2, and Im(rjk), Im(sjk ) >t ~, which uniformly 
fill a L x W rectangle separated by a distance ~ from the metal wall. A for- 
mula for the grand partition function in terms of a determinant, analogous 
to (2.5), can be given. 

Modifying the results of ref. 6 to account for semiperiodic boundary 
conditions, we have 

"~2 = det ([2MIM2 n'~x'~Y 
% 

where 

[ 1 ] 
K 1 = i~+ sin(z(rjk-- r~k,)/L) ' 

K3 = - i~_ sin(n(s~2_ rT.,k,)/L , 

Kz=i~+[sin(n(rjkls/k,)/Li] 

K 4 = - i ~ - [ s i n ( z ~ ( s ~ l s j , ~ , ) / L ) l  

(4.1b) 

In terms of the eigenvalues 2j of the block matrix in (4.1a), we therefore 
have 

2MI M2 
~2 = l-I (1 + 2j) (4.1c) 

j = l  
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Unlike (2.5a), the block matrix in (4.1a) is not anti-Hermitian, so no 
pairing of the eigenvalues in (4.1c) is possible. 

Analogous to (2.8a), in the continuum limit the eigenvalue problem 
takes the form of calculating the eigenvalues 2 and the eigenfunctions 
(F(r, s), G(r, s)) of the coupled integral equations 

~z f~ ~+~v fo L F(rl 's l )  
-~ dSl dr1 sinrc[r2_rl + i ( s z+s l ) ] /L  

7r f~ ~+w fo~ G(rl'Sl) 
+ ~  dSl drl sin rC[rz--r 1 +i(s2--Sl)]/L 

2 
= i~--~ F(r2, s21 (4.2a) 

and 

-i ds~ 

q- d s  1 

2 
- G(r2, s2) 

i~_ 

F(rl, sl) 
dr1  . 

sm rcEr2 - rl - i(s2 - sl) ]/L 

dr1 
G(rl, Sl) 

sin rcEr2 - r 1 - -  i (S  2 "4- S 1 ) ]/L 

(4.2b) 

The method of solution of these equations is very similar to that of (2.8) 
specified from (2.10) above. The eigenfunctions are again of the form (2.10). 
Defining v and # by (2.13a) and (2.13b), respectively, and writing 

~_(~+ff )1 /2  C=(~ /~ + )1/2 (4.3) 

we find that for p ~> 1 the allowed values of v are specified by the equation 

, _ sinrcW[(v~)2-1z2] 1/2 
( i v~e-~ '+l~)  ~(~(-~y)2--~  +c~ 1/2=0 (4.4) 

For p < 1 the same equation holds except that/~ is to be replaced by - ~  
and C by 1/C. 

For large volumes, the grand potential (3.1) should have the behavior 

s ~ - L W p ( ( )  + L(e)s((, A~b) + (ns(~, a = 0)) (4.5) 

Thus, to calculate co,(~, A~b), which due to its functional dependence on Aq~ 
rather than a is related to the surface tension by (3.7), we again want the 
term independent of W in the large-W expansion of 

- f l f 2w= fR dt ~ log(l+2S-J~ (4.6) 
- -  R q : f ( Y t ,  q) = 0 V t ,  q ,]  
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where f(Tt, q) denotes the LHS of (4.4) and the meaning of t, q, and R is 
the same as in Section 3.1. Thus sum in (4.6) can be evaluated using 
Theorem 1. We thus obtain 

2 ~eOs(~, A(~) = - dt [g ( t ,  ()  + g(t ,  1/()] + (1 - ~/2)~ (4.7a) 

where 

.~'C --4~zte Jr- t 
(4.7b) 

and the quantity C is related to A~b by 

( =  e 13qA~ (4.7c) 

5. C O M P A R I S O N  OF R E S U L T S  

The ideally polarizable interface and metal wall are natural functions 
of the potential drop A~b, whereas the charged wall is a natural function of 
the excess surface charge density qa. In the latter system the two quantities 
are related by the general sum rule (2'9) 

- -  - ~  (5 .1 )  
Oq~r 

which from (3.19) gives 

a = ~ sinh(2Ack/q) (5.2) 

This is in agreement with the formula obtained obtained by calculating A~b 
directly from the particle densities [ref. 2, Eq. (4.1)]. 

The excess charge densities for the ideally polarizable interface and the 
metal wall can be calculated from the exact expressions (3.20) and (4.7) for 
the surface tension by using the Lippmann equation 

a7 
aA~b = - q a  (5.3) 

In general, no explicit evaluation of the resulting integrals is possible. An 
exception is the ideally polarizable interface with equal bulk densities, in 
which case we obtain 

a = (~(/2) sinh(d~b/q) (5.4) 
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d -  ;5 .'o f 

Fig. 1. Plot of the excess surface density a as a function of (=e -/lq'~ for the ideally 
polarizable interface with equal bulk densities (crosses) and the metal wall with an 
impermeable barrier of size 4he = 1 (triangles) and 4he = 0.25 (~quares), In both cases ~ = 1. 

in agreement with ref. 2 [Eq. (4.17)]. A comparison of the dependence of 
a on the quantity C, (4.7c), is given in Fig. 1 for the ideally polarizable 
interface with equal bulk densities and the metal wall. 

The differential capacity is defined as 

C= ~qa (5.5) 

For the primitive electrode and the ideally polarizable interface with equal 
bulk fugacities we have from (5.2) and (5.4) 

and 
C = 2~ cosh(2Afb/q) 

C = (7~ff/2) cosh(A(~/q) 

(5.6a) 

(5.6b) 

3- 

1 

2. 

x 

10 .5' ,9' 

x 

.1  ~ 

Fig. 2. Plot of the differential capacity C as a function of ( =  e-~q'~o. The particular systems 
and notat ion are the same as for Fig. 1. 

8 2 2 / 6 7 / 3 - 4 - 2  
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respectively [ these  results are also given in ref. 2, Eqs. (4.2) and  (4.18)].  
F o r  the meta l  wall  C can be ca lcula ted  by using (4.7), (5.3), and  (5.5). 
A c o m p a r i s o n  with (5.6b) is given in Fig. 2. 

A C K N O W L E D G M E N T S  

I thank  the referee for some useful remarks .  This work  was suppo r t ed  
by the Aus t ra l i an  Research Council .  

R E F E R E N C E S  

1. M. Gaudin, J. Phys. (Paris) 46:1027 (1985). 
2. F. Cornu and B. Jancovici, J. Chem. Phys. 90:2444 (1989). 
3. F. Cornu and B. Jancovici, J. Star. Phys. 49:33 (1987). 
4. P. J. Forrester, J. Stat. Phys. 61:1141 (1990). 
5. P. J. Forrester and T. M. Morrow, J. Star. Phys. 63:1 (1991). 
6. P. J. Forrester, J. Chem. Phys. 95:4545 (1991). 
7. M. L. Rosinberg and L. Blum, J. Chem. Phys. 81:3700 (1984). 
8. F. Cornu, J. Stat. Phys. 54:681 (1989). 
9. P. J. Forrester, J. Phys. A 18:1419 (1985). 


